Parkinson's Disease Tulip


advertisement
Reply
 
Thread Tools Display Modes
Old 06-18-2007, 07:07 AM #1
reverett123's Avatar
reverett123 reverett123 is offline
In Remembrance
 
Join Date: Aug 2006
Posts: 3,772
15 yr Member
reverett123 reverett123 is offline
In Remembrance
reverett123's Avatar
 
Join Date: Aug 2006
Posts: 3,772
15 yr Member
Default A couple of analogies on genes and BBB

In dealing with complex things like ourselves, analogies help me a lot. I would offer two for comment and correction, partly because I would like to know if they are correct...

First, the blood brain barrier is like a lady's elbow length glove. Her arm is the vein or artery, her fingers the capillaries. If she interlocks the fingers of her two hands then one arm is a vein and the other is an artery. Her gloves separate one region (her) from another (the world).

In general, her glove acts to keep larger things from passing through while allowing smaller things to pass. THe tightness of the weave determines this and that tightness fluctuates. If the glove gets wet, for example, or is stretched.

Second, the concept of the role of genes and PD. Think of each of us as a variation of a piece of music inscribed on an old player piano roll. While we are not exactly alike, anyone who heard our particular variation would be able to recognize the piece of music. Each note is defined by a hole in the paper strip and sounds out as it goes by. The role is a continuous band and plays until it breaks from wear or weakness.

The role is our DNA and each hole is a gene. The piece of music is "human" and each is different and yet the same. Sometimes, however, individual notes can be way off or missing entirely, and the discordance can be jarring. Illness can result.

Now, if you wil picture yourself standing in the open doorway of an oldtime music hall. Down front the player piano is chugging away with its particular version of the paper role. But there are many other sounds, too. The din of conversation, the clink of glasses. From outside the traffic in the street, a distant clock chimes, etc. All these combine to create what we are. The hole passes and the gene expresses and then goes quiet until its next pass. Perhaps it is a little out of place and is not noticeable in the noise of the hall. Or perhaps it comes by just as a lull in conversation descends and suddenly is noticed.

Disease (PD or otherwise) can result from the coincidental misplaced hole pairing with the random lull. There would be many opportunities for such things to happen but the odds are always low unless the hole is very much out of place.

The more holes out of place, the amount they are displaced, the pattern of the other sounds, the time of day at the hall, the nature of the crowd, etc all combine to determine whether the net result is a ragtime favorite or PD. The BBB may fail, but that is the mechanism, not the cause. The genes may be misplaced, but that alone is not enough. In fact, no ONE thing is enough.

The old saying of "many paths to the same door" is apropriate here.
__________________
Born in 1953, 1st symptoms and misdiagnosed as essential tremor in 1992. Dx with PD in 2000.
Currently (2011) taking 200/50 Sinemet CR 8 times a day + 10/100 Sinemet 3 times a day. Functional 90% of waking day but fragile. Failure at exercise but still trying. Constantly experimenting. Beta blocker and ACE inhibitor at present. Currently (01/2013) taking ldopa/carbadopa 200/50 CR six times a day + 10/100 form 3 times daily. Functional 90% of day. Update 04/2013: L/C 200/50 8x; Beta Blocker; ACE Inhib; Ginger; Turmeric; Creatine; Magnesium; Potassium. Doing well.
reverett123 is offline   Reply With QuoteReply With Quote

advertisement
Old 06-18-2007, 07:13 AM #2
reverett123's Avatar
reverett123 reverett123 is offline
In Remembrance
 
Join Date: Aug 2006
Posts: 3,772
15 yr Member
reverett123 reverett123 is offline
In Remembrance
reverett123's Avatar
 
Join Date: Aug 2006
Posts: 3,772
15 yr Member
Default This is what got me started...

Web address: http://www.sciencedaily.com/releases...0615075550.htm

Source: Public Library of Science
Date: June 18, 2007
Keywords:
Genetics, Developmental Biology, Parkinson's, Evolutionary Biology, Insomnia, Cloning
Circadian Rhythms Dominate All Life Functions, According To Study

Science Daily — New research from Colorado State University shows that the function of all genes in mammals is based on circadian -- or daily -- rhythms. The study, refutes the current theory that only 10 percent to 15 percent of all genes were affected by nature's clock. While scientists have long known that circadian rhythms regulate the behavior of the living, the study shows that daily rhythm dominates all life functions and particularly metabolism. The new study presents oscillation as a basic property of all genes in the organism as opposed to special function of some genes as previously believed.

Knowing about oscillation properties of genes involved in metabolism is essential for understanding how genes interact with and regulate health and disease. Colorado State University researcher Andrey Ptitsyn's new analysis of data collected through several studies establishes a baseline oscillation in 98 to 99 percent of all genes through advanced computer algorithms. Most of these genes have never been previously reported as changing their expression level in a daily cycle. Some of these genes, considered "housekeeping," have been used as a stable reference platform in gene expression studies.

"Anyone who diets, for example, knows you shouldn't eat late, and now we are getting closer to understanding why exactly," said Ptitsyn, a researcher in the Bioinformatics Center at the College of Veterinary Medicine and Biomedical Sciences. The center is located in the Department of Microbiology, Immunology and Pathology. "We discovered that all genes have a significant change in pattern of activity -- or expression -- throughout the day. Every pathway of gene expression is affected by circadian rhythms, and the timing of the rhythms from each group of genes that are synchronized is important."

Ptitsyn also discovered alternative short and long copies of some genes oscillating in the opposite phase. These genes are essential components of leptin signaling system, responsible for the sensation of satiety after eating. The oscillating pattern varies in different organs and determines the effect of leptin on regulation of the energy balance. Better understanding gene oscillation may provide researchers with clues for developing ways to treat people who overeat because of impaired leptin signaling.

Circadian rhythms are biological rhythms that cycle over a period of about 24 hours and regulate timing for most physiological functions and behaviors such as sleeping, eating and activity. As a checks-and-balances procedure, Ptitsyn analyzed the sets of data with several mathematical approaches to achievethe same results. The research also shows that gene oscillation is significantly more organized when mammals are exposed to regular periods of day and night. Oscillation can become chaotic in states of consistent lighting or lack of lighting, but it never stops.

Comparing the complex system in which the genes function to an AC power grid, Ptitsyn made the discovery by plotting the expression of 20,000 genes on a scale of frequency, or intensity, over a two day period and sorting them by phase or timing of oscillation. Where previous studies have failed, the Colorado State study uses advanced algorithms that have the capacity to identify patterns in such a large number of genes.

Ptitsyn discovered that gene activity oscillates in a "finely orchestrated" system and gene expression can be impacted by daylight and darkness -- or a lack of both. For example, while gene expression oscillates in mice exposed to a constant state of dim light or darkness, the groups of genes that typically oscillate together -- such as genes responsible for the function of an organ or a specific tissue -- are chaotic under this state and don't function as a group. Lack of orchestration can be easily confused with the lack of oscillation. This makes the rhythm much harder to detect.

"It's like a conductor walking away from an orchestra during a performance; each musician continues to play, gradually going out of key with the others," said Ptitsyn. That is one likely reason why researchers previously missed the impact of circadian rhythm on all genes.

Depending upon environmental factors, groups of genes can function in a synchronized manner, shifting in time against each other and working in what resembles a domino effect.

However, very few genes are found to be oscillating in the same phases in different tissues or organs. In fact, only about 5 percent of all genes fall into the same phase or timing of peaks and valleys. Synchronization with the activity of the other genes and genes in different organs is a very important and highly specific part of gene function.

In addition, genes can oscillate with different amplitude -- the swing between the highest and the lowest point. Genes are expressed at very different levels, but most of them have the same relative change throughout the day. However, some genes show significant change in the amplitude in different organs or in response to a changing environment.

"When we standardize genes onto a common scale that measures levels of expression, we could not find a single gene that did not oscillate," Ptitsyn said.

Source: Ptitsyn AA, Zvonic S, Gimble JM (2007) Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes. PLoS Comput Biol 3(6): e120. doi:10.1371/journal.pcbi.0030120

Note: This story has been adapted from a news release issued by Public Library of Science.


Copyright © 1995-2007 ScienceDaily LLC — All rights reserved — Contact: editor@removeme.sciencedaily.com
__________________
Born in 1953, 1st symptoms and misdiagnosed as essential tremor in 1992. Dx with PD in 2000.
Currently (2011) taking 200/50 Sinemet CR 8 times a day + 10/100 Sinemet 3 times a day. Functional 90% of waking day but fragile. Failure at exercise but still trying. Constantly experimenting. Beta blocker and ACE inhibitor at present. Currently (01/2013) taking ldopa/carbadopa 200/50 CR six times a day + 10/100 form 3 times daily. Functional 90% of day. Update 04/2013: L/C 200/50 8x; Beta Blocker; ACE Inhib; Ginger; Turmeric; Creatine; Magnesium; Potassium. Doing well.
reverett123 is offline   Reply With QuoteReply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
A couple of questions RE: TOS Rachael Thoracic Outlet Syndrome 16 02-07-2007 05:53 AM
Couple of things Silverlady Pets & Wildlife 18 10-31-2006 10:56 AM
Couple of pet blogs dyslimbic Pets & Wildlife 3 10-16-2006 05:03 PM
couple questions harley Parkinson's Disease 7 08-23-2006 09:41 PM


All times are GMT -5. The time now is 08:01 AM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
 

NeuroTalk Forums

Helping support those with neurological and related conditions.

 

The material on this site is for informational purposes only,
and is not a substitute for medical advice, diagnosis or treatment
provided by a qualified health care provider.


Always consult your doctor before trying anything you read here.