View Single Post
Old 02-03-2009, 08:26 PM
ZucchiniFlower's Avatar
ZucchiniFlower ZucchiniFlower is offline
Member
 
Join Date: Sep 2006
Posts: 782
15 yr Member
ZucchiniFlower ZucchiniFlower is offline
Member
ZucchiniFlower's Avatar
 
Join Date: Sep 2006
Posts: 782
15 yr Member
Default

An old drug, deprenyl (Selegiline), affects the production of nrf2 and may offer neuroprotection.

Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins 2005

Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson’s disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K–Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K–Nrf2 system may be a useful therapeutic strategy for PD.

http://www.sciencedirect.com/science...19ef5d0b3f5158
ZucchiniFlower is offline   Reply With QuoteReply With Quote