http://www.sciencedaily.com/releases...1223152435.htm
Fat Influences Decisions Taken by Brain Cells for Production and Survival
Dec. 23, 2012 — Scientists at Karolinska Institutet in Sweden have identified two molecules that play an important role in the survival and production of nerve cells in the brain, including nerve cells that produce dopamine..., may be significant in the long term for the treatment of several diseases, such as Parkinson's disease.
... receptors known as "liver X receptors" or LXR, are necessary for the production of different types of nerve cells, or neurons, in the developing ventral midbrain. One these types, the midbrain dopamine-producing neurons play an important role in a number of diseases, such as Parkinson's disease.
What was not known, however, was which molecules stimulate LXR in the midbrain, such that the production of new nerve cells could be initiated. ...
These two molecules are named cholic acid and 24,25-EC, and are bile acid and a derivate of cholesterol, respectively. The first molecule, cholic acid, influences the production and survival of neurons in what is known as the "red nucleus," which is important for incoming signals from other parts of the brain. The other molecule, 24,25-EC (cholesterol derivative), influences the generation of new dopamine-producing nerve cells, which are important in controlling movement.
One important conclusion of the study is that 24,25-EC can be used to turn stem cells into midbrain dopamine-producing neurons, the cell type that dies in Parkinson's disease... opens the possibility of using cholesterol derivates in future regenerative medicine, since new dopamine-producing cells created in the laboratory could be used for transplantation to patients with Parkinson's disease.
... Derivatives of cholesterol control the production of new neurons in the developing brain. When such a decision has been taken, cholesterol aids in the construction of these new cells, and in their survival. Thus cholesterol is extremely important for the body, and in particular for the development and function of the brain."