Parkinson's Disease Tulip


advertisement
Reply
 
Thread Tools Display Modes
Old 07-30-2013, 07:44 AM #1
VICTORIALOU's Avatar
VICTORIALOU VICTORIALOU is offline
Member
 
Join Date: Oct 2010
Location: Los Angeles area
Posts: 241
10 yr Member
VICTORIALOU VICTORIALOU is offline
Member
VICTORIALOU's Avatar
 
Join Date: Oct 2010
Location: Los Angeles area
Posts: 241
10 yr Member
Default Compounds that target amyloids

Scientists ID Compounds That Target Amyloid Fibrils in Alzheimer's, Other Brain Diseases



http://www.sciencedaily.com/releases...0726092429.htm

July 26, 2013 — UCLA chemists and molecular biologists have for the first time used a "structure-based" approach to drug design to identify compounds with the potential to delay or treat Alzheimer's disease, and possibly Parkinson's, Lou Gehrig's disease and other degenerative disorders.

All of these diseases are marked by harmful, elongated, rope-like structures known as amyloid fibrils, linked protein molecules that form in the brains of patients.
Structure-based drug design, in which the physical structure of a targeted protein is used to help identify compounds that will interact with it, has already been used to generate therapeutic agents for a number of infectious and metabolic diseases.
The UCLA researchers, led by David Eisenberg, director of the UCLA-Department of Energy Institute of Genomics and Proteomics and a Howard Hughes Medical Institute investigator, report the first application of this technique in the search for molecular compounds that bind to and inhibit the activity of the amyloid-beta protein responsible for forming dangerous plaques in the brain of patients with Alzheimer's and other degenerative diseases.
In addition to Eisenberg, who is also a professor of chemistry, biochemistry and biological chemistry and a member of UCLA's California NanoSystems Institute, the team included lead author Lin Jiang, a UCLA postdoctoral scholar in Eisenberg's laboratory and Howard Hughes Medical Institute researcher, and other UCLA faculty.
The research was published July 16 in eLife, a new open-access science journal backed by the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust.
A number of non-structural screening attempts have been made to identify natural and synthetic compounds that might prevent the aggregation and toxicity of amyloid fibrils. Such studies have revealed that polyphenols, naturally occurring compounds found in green tea and in the spice turmeric, can inhibit the formation of amyloid fibrils. In addition, several dyes have been found to reduce amyloid's toxic effects, although significant side effects prevent them from being used as drugs.
Armed with a precise knowledge of the atomic structure of the amyloid-beta protein, Jiang, Eisenberg and colleagues conducted a computational screening of 18,000 compounds in search of those most likely to bind tightly and effectively to the protein.
Those compounds that showed the strongest potential for binding were then tested for their efficacy in blocking the aggregation of amyloid-beta and for their ability to protect mammalian cells grown in culture from the protein's toxic effects, which in the past has proved very difficult. Ultimately, the researchers identified eight compounds and three compound derivatives that had a significant effect.
While these compounds did not reduce the amount of protein aggregates, they were found to reduce the protein's toxicity and to increase the stability of amyloid fibrils -- a finding that lends further evidence to the theory that smaller assemblies of amyloid-beta known as oligomers, and not the fibrils themselves, are the toxic agents responsible for Alzheimer's symptoms.
The researchers hypothesize that by binding snugly to the protein, the compounds they identified may be preventing these smaller oligomers from breaking free of the amyloid-beta fibrils, thus keeping toxicity in check.
An estimated 5 million patients in the U.S. suffer from Alzheimer's disease, the most common form of dementia. Alzheimer's health care costs in have been estimated at $178 billion per year, including the value of unpaid care for patients provided by nearly 10 million family members and friends.
In addition to uncovering compounds with therapeutic potential for Alzheimer's disease, this research presents a new approach for identifying proteins that bind to amyloid fibrils -- an approach that could have broad applications for treating many diseases.
Co-authors on the research included Cong Liu, David Leibly, Meytal Landau, Minglei Zhao and Michael Hughes.
The research was funded by the Howard Hughes Medical Institute and the National Institute of Aging, part of the National Institutes of Health (grant AG-029430).
__________________
VictoriaLou
.
VICTORIALOU is offline   Reply With QuoteReply With Quote
"Thanks for this!" says:
Tupelo3 (07-30-2013)

advertisement
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
Biographs-linking compounds, genes to diseases olsen Parkinson's Disease 1 03-05-2012 02:32 PM
Lidocaine Ointment instead of compounds Reddawn600 Reflex Sympathetic Dystrophy (RSD and CRPS) 7 01-13-2011 07:47 AM
Tea compounds and neurodegeneration reverett123 Parkinson's Disease 8 09-21-2008 08:20 PM
Marijuana-like compounds may aid ALS BobbyB ALS 1 09-27-2006 08:13 PM


All times are GMT -5. The time now is 06:34 PM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
 

NeuroTalk Forums

Helping support those with neurological and related conditions.

 

The material on this site is for informational purposes only,
and is not a substitute for medical advice, diagnosis or treatment
provided by a qualified health care provider.


Always consult your doctor before trying anything you read here.