Parkinson's Disease Tulip


advertisement
 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 07-19-2015, 11:14 AM #1
olsen's Avatar
olsen olsen is offline
Senior Member
 
Join Date: Aug 2006
Posts: 1,860
15 yr Member
olsen olsen is offline
Senior Member
olsen's Avatar
 
Join Date: Aug 2006
Posts: 1,860
15 yr Member
Default Neuroprotection in mouse PD model using PEA (

Send to:
PLoS One. 2012;7(8):e41880. doi: 10.1371/journal.pone.0041880. Epub 2012 Aug 17.
Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson's disease.
Esposito E1, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S.
Author information
Abstract
The biochemical and cellular changes that occur following treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP) are remarkably similar to that seen in idiopathic Parkinson's disease (PD). PD is characterized by the degeneration of dopaminergic nigrostriatal neurons, which results in disabling motor disturbances. Activation of glial cells and the consequent neuroinflammatory response is increasingly recognized as a prominent neuropathological feature of PD. There is currently no effective disease-modifying therapy. Targeting the signaling pathways in glial cells responsible for neuroinflammation represents a promising new therapeutic approach designed to preserve remaining neurons in PD. Chronic treatment with palmitoylethanolamide (PEA, 10 mg/kg, i.p.), initiated 24 hr after MPTP injection (20 mg/kg), protected against MPTP-induced loss of tyrosine hydroxylase positive neurons in the substantia nigra pars compacta. Treatment with PEA reduced MPTP-induced microglial activation, the number of GFAP-positive astrocytes and S100β overexpression, and protected against the alterations of microtubule-associated protein 2a,b-, dopamine transporter-, nNOS- positive cells in the substantia nigra. Furthermore, chronic PEA reversed MPTP-associated motor deficits, as revealed by the analysis of forepaw step width and percentage of faults. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated MPTP systemic toxicity, while PEA-induced neuroprotection seemed be partially PPARα-dependent. The effects of PEA on molecules typically involved in apoptotic pathways were also analyzed. Our results indicate that PEA protects against MPTP-induced neurotoxicity and the ensuing functional deficits even when administered once the insult has been initiated.

PMID: 22912680 [PubMed - indexed for MEDLINE] PMCID: PMC3422290


Extra links:
http://www.ncbi.nlm.nih.gov/pubmed/24412329

http://www.ncbi.nlm.nih.gov/pubmed/24412329
__________________
In the last analysis, we see only what we are ready to see, what we have been taught to see. We eliminate and ignore everything that is not a part of our prejudices.

~ Jean-Martin Charcot


The future is already here — it's just not very evenly distributed. William Gibson
olsen is offline   Reply With QuoteReply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
finally, new mouse model lurkingforacure Parkinson's Disease 0 05-03-2010 07:10 PM
new mouse model of PD-sounds promising lurkingforacure Parkinson's Disease 5 06-09-2009 10:51 PM
Researchers develop tx for MS mouse model wannabe Multiple Sclerosis 7 11-24-2006 07:56 PM


All times are GMT -5. The time now is 02:24 PM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
 

NeuroTalk Forums

Helping support those with neurological and related conditions.

 

The material on this site is for informational purposes only,
and is not a substitute for medical advice, diagnosis or treatment
provided by a qualified health care provider.


Always consult your doctor before trying anything you read here.