Parkinson's Disease Tulip


advertisement
Reply
 
Thread Tools Display Modes
Old 12-21-2007, 04:22 AM #1
lou_lou's Avatar
lou_lou lou_lou is offline
In Remembrance
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
lou_lou lou_lou is offline
In Remembrance
lou_lou's Avatar
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
Lightbulb Neuroplasticity - the brain can change!

New Technologies Map the Frontiers of Brain Research
By Tom Valeo
November 21, 2007

Understanding how the brain generates the thoughts, feelings and impulses that make up human consciousness will require a reliable brain-wiring diagram of almost unimaginable complexity. Scientists at the Society for Neuroscience meeting discussed emerging technologies that suggest a world of possibility for such brain mapping.

A clear picture of how neural networks link to one another and coordinate mental activity amounted to science fiction until recent years, and it still remains decades from fruition. But researchers are optimistic.



“I marvel at the power of the arsenal of tools our field is creating,” H. Sebastian Seung, a professor of computational neuroscience at the Massachusetts Institute of Technology, said in a lecture titled “The Once and Future Science of Neural Networks.”



H. Sebastian Seung envisions using powerful computers to map and investigate the brain in new ways. (Photos courtesy of SfN)

“In the future scientists will create vast databases telling us how neural networks are created, what signals they send to each other, what genes they express. Our possession of these tools allow us to dream today of what I never could have imagined in my youth.”
The vast amounts of data will produce a new field Seung calls connectomics, which will involve using powerful computers to chart and analyze the brain.

“Analyzing that information will be one of the greatest computational challenges of all time,” Seung said.

One way of coping with this flood of data will be through neuroinformatics, a relatively new field that uses computers for mining and sharing data, said Mark Ellisman, a professor of neuroscience and bioengineering at the University of California at San Diego, who delivered a lecture on “Brain Research in the Digital Age.”

Ellisman envisions the creation of a “Whole Brain Catalog” that would consist of a massive computer database, allowing scientists to deposit information they accumulate about the brain into a centralized bank from which all scientists could draw. “The storage of data is not the problem,” he said. “Managing the data is the problem.”

Neuroinformatics will play a pivotal role in accelerating progress in neuroscience in the 21st century, Ellisman said. The National Institutes of Health, he said, is developing the Biomedical Informatics Research Network (BIRN) to enable researchers to exchange data on animal models of multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. And the Cell-Centered Database (CCDB) is providing scaffolding for knowledge about molecular processes, organelles and other sub-microscopic processes in the brain.

Detecting Connection Patterns
New imaging techniques will help create a detailed wiring diagram of the brain, scientists agree. A type of magnetic resonance imaging called diffusion tensor imaging uses the movement of water in the brain to infer the location of tracts of fibers called axons that link various regions, provides vivid insights into how the brain is wired, said Heidi Johansen-Berg of the Center for Functional Magnetic Imaging of the Brain at the University of Oxford.

Until recently such wiring patterns were discovered only by dissecting brains, or by performing invasive tracer studies in living animals. Diffusion tensor imaging allows researchers to see the living human brain in action noninvasively.

For example, in the ventricles of the brain, which are filled with cerebrospinal fluid, the water diffuses evenly in every direction, but in the presence of the myelin-coated axons, water tends to flow parallel to these fibers. By measuring this motion, it becomes possible to map those tracts, thereby revealing how brain regions are connected.

“The changes in connection patterns also hint at boundaries between regions,” Johansen-Berg said in her lecture, “Imaging Human Brain Connections.”

Johansen-Berg cited as an example the work of researchers who have been able to divide the thalamus, in the center of the brain, into regions that are not visible on magnetic resonance imaging scans, and then trace how those various regions connect to the motor cortex, the prefrontal cortex, the visual system and other areas. Such wiring diagrams provide invaluable information about how the brain modulates its functions.

“By making use of connectivity data, we can determine structures not previously available to us,” she said.

Synapse Insight
Karel Svoboda of the Howard Hughes Medical Institute at Janelia Farm Research Campus in Virginia has been using technology to reveal the workings of synapses, which are the communication links among neurons. This knowledge is essential for understanding how the brain changes in response to experience.



Karel Svoboda of the Howard Hughes Medical Institute is employing a technique called two-photon laser scanning microscopy to study how synapses communicate. (Courtesy of SfN)

Using a technique known as two-photon laser scanning microscopy, Svoboda has produced time-lapse images that reveal how synapses communicate.
“With its high resolution, it is possible to image individual synapses,” he said during his lecture, “Imaging Synapses in Their Habitat.”

“It’s very specific—it can measure the distribution and trafficking of molecules. It allows us to detect stable versus plastic synapses.”

Although most synapses are stable, some persisting for a lifetime, others change vigorously in response to experience, Svoboda said.

“At the fast end of the spectrum, neurotransmitter release can be modulated in as little as a few milliseconds, a phenomenon that is thought to contribute to short-term memory,” Svoboda said. “On the slow end of the spectrum, changes in synaptic strength are believed to encode long-term memories, implying that the structure and function of some synapses might be maintained over years.”

Despite such advances, communication within the brain remains largely a mystery, Svoboda noted.

“We really have no idea what happens at synapses when they change,” he said. “Imaging individual synapses during plasticity would be a huge step forward, and would remove many ambiguities.”

Mriganka Sur of the Picower Institute for Learning and Memory at MIT has used another imaging technique, multi-photon laser scanning microscopy, to obtain images of the function and structure of individual neurons, their synapses, and the supporting cells known as astrocytes, whose function remains tantalizingly unknown.

“We have found that neurons in the visual cortex are clustered according to their ability to detect different properties, such as the vertical edge of an object, or the horizontal edge,” said Sur. “This sensitivity to the orientation of the edge of light that defines an object is, at its most basic level, how we see all forms and shapes.”

In his book On Intelligence, Jeffrey Hawkins, developer of the PalmPilot and the Treo “smartphone,” asserts that the brain is a pattern-recognition device with memory capacity that is dedicated to making predictions about the environment. Hawkins argued in his presentation at the meeting that such a view of intelligence applies to artificial as well as human intelligence, and he studies neuroscience, he said, in an effort to understand how to make computers smarter.

Seung turned that idea around.

“I say, what can computer science do for neuroscience?” he asked during his lecture. “Philosophers love to ponder whether the human brain is complex enough to understand itself, but the new question is different: When will the artifacts developed by man become sophisticated enough to understand the human brain? I do not know when this will happen, but I am sure it will eventually come to pass.”

About Tom Valeo

Tom Valeo is a freelance medical writer whose article have appeared in BrainWork.


Privacy Policy Copyright 2007 The Dana Foundation All Rights Reserved danainfo@dana.org
__________________
with much love,
lou_lou


.


.
by
.
, on Flickr
pd documentary - part 2 and 3

.


.


Resolve to be tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant with the weak and the wrong. Sometime in your life you will have been all of these.
lou_lou is offline   Reply With QuoteReply With Quote

advertisement
Old 12-21-2007, 10:30 AM #2
lou_lou's Avatar
lou_lou lou_lou is offline
In Remembrance
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
lou_lou lou_lou is offline
In Remembrance
lou_lou's Avatar
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
Lightbulb excerpt from Roger Penrose's book - the emperors new mind...

Roger Penrose in his book

The Emperor's New Mind describes the relevance of synaptic firing in the phenomenon of brain plasticity. He states, "It is actually not legitimate to regard the brain as simply a fixed collection of wired-up neurons. The interconnections between neurons are not in fact fixed but are changing all the time. I am referring to the synaptic junctions where the communication between different neurons actually takes place. Often these occur at places called dendrite spines, which are tiny protuberances on dendrites at which contact with synaptic knobs can be made. Here , 'contact' means not just touching, but leaving a narrow gap (synaptic cleft) of just the right distance - about one forty-thousandth of a millimeter. Now under certain conditions, these dendrite spines can shrink away and break contact, or they (or new ones) can grow to make new contact."
It is estimated the you have about one hundred billion neurons in your brain, about ten billion of which are in your neo-cortex. It has been speculated that you lose about one thousand neurons each day after you reach forty.

Research is finding that this loss can be offset by stimulating the brain regularly. A nerve is not like a simple relay circuit. Whether it fires or not depends on a complex interplay of many inputs. These can be inhibitory or exhibitory influences from the neurons surrounding it, or the intracellular fluid that fills the synaptic gap. If a neuron doesn't get enough excitatory input from the neurons connected to it, or gets too many neurotransmitters that inhibit neural action, it will do nothing.
Other research has found that if a neuron is being used, it secretes substances that affect nearby cells responsible for the neuron's nourishment. These cells, in turn, produce a chemical that appears to preserve the neuron from destruction. If the neuron does not get that substances, it dies.
In concert with this effect, Leif Finkel and Gerald M. Edelman of Rockefeller University have discovered that neurons do not act randomly but as a network. They tend to organize themselves into groups and specialize for different kinds of information processing. For example, when a touch stimuli comes in from the finger it first comes into the neural network. The information activates some groups of neurons more than others, and this high level of activity causes the connections among the group of excited neurons to be reinforced. As more and more similar patterns come through the network, the connections among the activated group of neurons becomes stronger and stronger, and eventually the group becomes specialized for processing that one finger's sense of touch.
As far back as 1949 Canadian neurophysiologist Donald Hebb proposed in his work Organization of Behavior that, "When an axon of cell A is near enough to excite a cell B, and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency as one of the cells firing B is increased." In other words, if one neuron sends a lot of signals that excite another neuron, the synapse between the two neurons is strengthened. The more active the two neurons are, the stronger the connection between them grows; thus, with every new experience, your brain slightly rewires its physical structure.
In working with nerve tissue scientists have also found that if two connected neurons are stimulated at the same time, the amount of signal passing from one neuron to the other can double. This is known as long-term potentiation or LTP. Whether this is permanent or not has yet to be verified. But work with aplysia, a sea-slug, by Eric Kandel of Columbia University, verified that the animal's neurons grew stronger as it learned to associate a food it disliked with the presence of a beam of light.
The internet is replete with more information on neural networks and brain plasticity. A simple search engine inquiry into either of these subjects will give more detailed information and lead to specific scientific articles.
This purpose of this site is to provide a simple method to 'exercise' the brain daily and make new connections. The brain's plasticity is becoming more apparent in cognitive science. More and more evidence is surfacing to validate the idea of "use it or lose it." Though this is something that common sense might dictate, there are very few mechanisms created that will allow us to use our brains in unfamiliar ways each day.

Doing different puzzles will produce different kinds of thought processes as you search for solutions. Puzzles are useful because they do have solutions, therefore you can test your ability to find a resolve because there is one.
The ability to flex the mind in whatever direction is necessary to find resolve is what leads to true creative thinking. Creativity is not just coming up with something that is different, but with something that is coherent, useful and relevant to whatever stimulated the need for a creative thought. Learning to think creatively is a skill that anyone can learn. Test yourself and see how flexible your mind is. Try this method for six months and see if you are able to think more clearly and apply either logical or analogical thought at will to any situation that arises.
© J.L. Read, 1997. All Rights Reserved.
__________________
with much love,
lou_lou


.


.
by
.
, on Flickr
pd documentary - part 2 and 3

.


.


Resolve to be tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant with the weak and the wrong. Sometime in your life you will have been all of these.
lou_lou is offline   Reply With QuoteReply With Quote
Old 12-21-2007, 05:45 PM #3
lou_lou's Avatar
lou_lou lou_lou is offline
In Remembrance
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
lou_lou lou_lou is offline
In Remembrance
lou_lou's Avatar
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
Trophy youtube video -excellent -

a little child will have half of her brain removed watch what happens -

http://www.youtube.com/watch?v=TSu9HGnlMV0
__________________
with much love,
lou_lou


.


.
by
.
, on Flickr
pd documentary - part 2 and 3

.


.


Resolve to be tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant with the weak and the wrong. Sometime in your life you will have been all of these.
lou_lou is offline   Reply With QuoteReply With Quote
Old 12-21-2007, 05:50 PM #4
lou_lou's Avatar
lou_lou lou_lou is offline
In Remembrance
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
lou_lou lou_lou is offline
In Remembrance
lou_lou's Avatar
 
Join Date: Sep 2006
Location: about 45 minutes to anywhere!
Posts: 3,086
15 yr Member
Arrow how neurons work -

http://www.youtube.com/watch?v=ysDGX6bOgAw
__________________
with much love,
lou_lou


.


.
by
.
, on Flickr
pd documentary - part 2 and 3

.


.


Resolve to be tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant with the weak and the wrong. Sometime in your life you will have been all of these.
lou_lou is offline   Reply With QuoteReply With Quote
Old 04-27-2009, 06:05 PM #5
DonaldMParker DonaldMParker is offline
Junior Member
 
Join Date: Apr 2009
Location: B.C. Canada
Posts: 11
15 yr Member
DonaldMParker DonaldMParker is offline
Junior Member
 
Join Date: Apr 2009
Location: B.C. Canada
Posts: 11
15 yr Member
Red face Neuroplasticity

Hi CTenaLouise,

Thanks for posting all that information. I think I got the gist of it. I particularly like the idea that one neuron can affect another. From a motivational standpoint, certain activities can help support others.

For instance, when I put on my sneakers and play some music on my MP3 headphones, it is easier to go to the gym.

I'm a TBI survivor (I just wrote a long post in the Brain Injury section of NeuroTalk). I find that when I combine activities, put them in a list, it makes the execution of a task easier. In order to get in my exercise in the morning, I first eat my breakfast, then drink orange juice and take my medication, then brush my teeth, and then exercise. It's the following of the list that charges me up to complete the hardest thing, exercise.

Thanks for posting all these medical reports.

Don
DonaldMParker is offline   Reply With QuoteReply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
Another med change Garney Epilepsy 9 01-16-2007 06:28 PM
Maybe I can't change anything but at least I try to Thelma Community & Forum Feedback 14 11-18-2006 11:28 PM
Persistant Brain Dysfunction from CFIDS Brain Damage OneMoreTime Fibromyalgia and Chronic Fatigue 1 10-29-2006 01:12 AM


All times are GMT -5. The time now is 10:52 PM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
 

NeuroTalk Forums

Helping support those with neurological and related conditions.

 

The material on this site is for informational purposes only,
and is not a substitute for medical advice, diagnosis or treatment
provided by a qualified health care provider.


Always consult your doctor before trying anything you read here.