NeuroTalk Support Groups

NeuroTalk Support Groups (https://www.neurotalk.org/)
-   Parkinson's Disease (https://www.neurotalk.org/parkinson-s-disease/)
-   -   Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease (https://www.neurotalk.org/parkinson-s-disease/201747-ultra-field-mri-allow-earlier-diagnosis-parkinsons-disease.html)

Lemonlime 03-05-2014 02:10 AM

Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease
 
http://www.eurekalert.org/pub_releas...-umm022614.php

Mirco Cosottini, M.D., from the University of Pisa in Italy, and colleagues studied the brains of 38 individuals, including 17 Parkinson's disease patients and 21 healthy controls, as well as a brain specimen from a deceased individual, to help determine the accuracy of ultra-high-field 7-Tesla (7-T) MRI for identifying Parkinson's disease.

Using the 7-T MRI, the researchers were able to distinguish a three-layered organization of the substantia nigra (SN), a crescent-shaped mass of cells in the midbrain. Parkinson's disease results from the loss of dopamine-producing cells located in this region of the brain. Dopamine is an important neurotransmitter involved in multiple brain functions, including motor and behavioral processes such as mood, reward, addiction and stress.

Based on abnormalities in the SN identified by the 7-T MRI, the researchers correctly classified patients with Parkinson's disease with a sensitivity of 100 percent and specificity of 96.2 percent.

According to Dr. Cosottini, the results show promise for earlier detection of the disease, which could speed the initiation of treatment.

"Parkinson's disease diagnosis remains clinically based, but with the introduction of 7-T MRI into clinical practice, a supporting radiologic diagnosis can be made," he said.

Tupelo3 03-05-2014 08:55 AM

Related New: Researchers create probe to monitor PD risk and progression
 
Quote:

Originally Posted by Lemonlime (Post 1054917)
http://www.eurekalert.org/pub_releas...-umm022614.php

According to Dr. Cosottini, the results show promise for earlier detection of the disease, which could speed the initiation of treatment.

"Parkinson's disease diagnosis remains clinically based, but with the introduction of 7-T MRI into clinical practice, a supporting radiologic diagnosis can be made," he said.

NUS researchers create first highly sensitive small molecule fluorescence probe to evaluate potential risk for Parkinson’s disease and monitor its progression

A team of researchers from National University of Singapore (NUS) have created the first two-photon, small molecule fluorogenic probe that can serve as a useful tool for the rapid assessment of an individual’s potential risk for Parkinson’s disease. The highly sensitive fluorescence probe can detect with high precision the activity of Monoamine Oxidase B (MAO-B), an enzyme that is found in elevated levels in patients with Parkinson’s disease. This innovation paves the way for the development of less costly non-invasive technologies and devices to help monitor the risk and progression of Parkinson’s disease.

The high MAO-B activity consistently observed in patients with Parkinson’s disease has been proposed as a biomarker, but there has been a lack of suitable small molecule probes for MAO-B specific detection in live cells and tissues. The small molecule probe designed and synthesised by the NUS team addresses these inadequacies of existing probes. Their probe is highly sensitive and can detect MAO-B specifically with greater precision.

The study also found that in patients with Parkinson’s disease, MAO-B activities are present only in human B-lymphocytes (a type of white blood cell), but not in fibroblasts (cells typically found in connective tissues). “This suggests that MAO-B activity in peripheral blood cells of a patient might serve as an accessible and economical biomarker to evaluate the potential risk of an individual for this disease”, said Assoc Prof Lim. Presently there is no reliable biomarker for Parkinson’s disease, either at the diseased or preclinical state, except for dopamine-based PET imaging, which is costly and requires highly specialised skills to perform.

“The probe may potentially be useful to monitor patient’s response to medication”, said Associate Professor Louis Tan, Senior Consultant, Department of Neurology at the National Neuroscience Institute, whose team has recently shown in a separate study that long term use of a MAO-B inhibitor reduces the progression of early Parkinson’s disease.

http://www.science.nus.edu.sg/press-...ts-progression

Nan Cyclist 03-05-2014 12:16 PM

Interesting. As part of the biomarkers research program I am involved in at the NIH, I have an annual 7 T MRI. Maybe that's what they are checking for, among other things. It's an exhausting experience to go through one of the 7 T MRIs. But if it will help…


All times are GMT -5. The time now is 10:30 AM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.