NeuroTalk Support Groups

NeuroTalk Support Groups (https://www.neurotalk.org/)
-   Fibromyalgia and Chronic Fatigue (https://www.neurotalk.org/fibromyalgia-and-chronic-fatigue/)
-   -   Research news from University of Michigan (https://www.neurotalk.org/fibromyalgia-and-chronic-fatigue/43175-research-news-university-michigan.html)

fiberowendy2000 04-09-2008 07:15 AM

Research news from University of Michigan
 
Pain in Fibromyalgia Is Linked to Changes in Brain Molecule

Libraries
Medical News Keywords
PAIN FIBROMYALGIA FMS GLUTAMATE CHRONIC Contact Information
Available for logged-in reporters onlyDescription
Researchers at the University of Michigan Health System have found a key linkage between pain and a specific brain molecule, a discovery that lends new insight into fibromyalgia, an often-baffling chronic pain condition. The discovery could be useful to researchers looking for new drugs that treat fibromyalgia.
http://www.newswise.com/images/tp.gifhttp://www.newswise.com/images/tp.gif

Newswise — Researchers at the University of Michigan Health System have found a key linkage between pain and a specific brain molecule, a discovery that lends new insight into fibromyalgia, an often-baffling chronic pain condition.
In patients with fibromyalgia, researchers found, pain decreased when levels of the brain molecule called glutamate went down. The results of this study, which appears in the journal Arthritis and Rheumatism, could be useful to researchers looking for new drugs that treat fibromyalgia, the authors say.
“If these findings are replicated, investigators performing clinical treatment trials in fibromyalgia could potentially use glutamate as a ‘surrogate’ marker of disease response,” says lead author Richard E. Harris, Ph.D., research assistant professor in the Division of Rheumatology at the U-M Medical School's Department of Internal Medicine and a researcher at the U-M Chronic Pain and Fatigue Research Center.
The molecule glutamate is a neurotransmitter, which means it conveys information between neurons in the nervous system. When glutamate is released from one neuron, it diffuses across the space between cells, and then binds to receptors on the next neuron in line and causes the cell to become excited, or to be more active.
This molecule was suspected to play a role in fibromyalgia because previous studies had shown that some brain regions in fibromyalgia patients appear to be highly excited. One such region is the insula.
In functional magnetic resonance imaging (fMRI) studies, researchers at U-M had previously shown that the insula displays augmented activity in fibromyalgia, which means neurons in these patients are more active in this part of the brain. The U-M team hypothesized, Harris notes, that more activity among these neurons might be related to the level of glutamate in this region.
To gauge the linkage between pain and glutamate, the researchers used a non-invasive brain imaging techinique called proton magnetic resonance spectroscopy (H-MRS). H-MRS was performed once before and once following a four-week course of acupuncture or “sham” acupuncture.
Researchers used either acupuncture or sham acupuncture to reduce pain symptoms. The sham procedure involved using a sharp device to prick the skin in order to mimic real acupuncture sensations.
Following the four weeks of treatment, both clinical and experimental pain reported were reduced significantly. More importantly the reduction in both pain outcomes was linked with reductions in glutamate levels in the insula: patients with greater reductions in pain showed greater reductions in glutamate. This suggests that glutamate may play a role in this disease and that it could potentially be used as a biomarker of disease severity.
Because of the small number of participants in this study, further research should be conducted to verify the role of glutamate in fibromyalgia, Harris says.
The senior author of the study was Daniel J. Clauw, M.D., director of the U-M Chronic Pain and Fatigue Research Center. Other authors were Richard H. Gracely, Ph.D., and Seong-Ho Kim, M.D., of the U-M Department of Internal Medicine; Pia C. Sundgren, M.D., Ph.D., Yuxi Pang, Ph.D., and Myria Petrou, M.D., of the U-M Department of Radiology; Michael Hsu, M.D., of the U-M Department of Physical Medicine and Rehabilitation; and Samuel A. McLean, M.D., of the U-M Department of Emergency Medicine.
Funding came from a Department of Army grant, the National Institutes of Health, and the NIH National Center for Complementary and Alternative Medicine.
Reference: Arthritis and Rheumatism, March 2008, Volume 58, Issue 3, “Dynamic Levels of Glutamate within the Insula are Associated with Improvements in Multiple Pain Domains in Fibromyalgia.”
For more information about fibromyalgia, visit the U-M Chronic Pain and Fatigue Research Center Web site: http://www.med.umich.edu/painresearch/patients/fibromyalgia.htm.

© 2008 Newswise. All Rights Reserved


One more step to a cure!

mrsD 04-09-2008 10:49 AM

fascinating...
 
Dr. Clauw is great. I saw him in person. He is a great teacher and speaker,
and brilliant IMO. He is also generous. He will take on referral any patient with a fibro diagnosis...where he gives a free afternoon to explain fibro to the patients.


Well, just goes to show... avoid that MSG...
We consume so much artifical glutamate it is horrifying to me sometimes!

You know there is a new class of drugs coming...ampakines
http://www.ampakines.org/
These are also going to work in glutamate neurotransmission.

Thanks for the update

coyote 05-10-2008 08:12 PM

Thanks for sharing the article.


All times are GMT -5. The time now is 07:25 AM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.