Parkinson's Disease Tulip


advertisement
Reply
 
Thread Tools Display Modes
Old 09-16-2011, 05:46 PM #1
olsen's Avatar
olsen olsen is offline
Senior Member
 
Join Date: Aug 2006
Posts: 1,860
15 yr Member
olsen olsen is offline
Senior Member
olsen's Avatar
 
Join Date: Aug 2006
Posts: 1,860
15 yr Member
Default Neurotransmitter (acetylcholine)-Regulated Immunity

Neurotransmitter-Regulated Immunity
Nerve signals control T cell responses, helping to explain inflammation and stroke.
By Rachel Nuwer | September 15, 2011

http://the-scientist.com/2011/09/15/...ated-immunity/

Neurotransmitters may play a bigger role in immunity than scientists had realized. In two papers published today (September 15) in Science Express, immunologists identify neurotransmitters as key players in two previously mystery-shrouded defense mechanisms: how the nervous system body puts the brakes on an overenthusiastic inflammatory response, and the reasons behind post-stroke infections.

“These connections between the brain and immune system in both health and disease are very intriguing,” said Lawrence Steinman, a professor of neurology ... The findings could have implications for the treatment of inflammatory disorders and stroke patients, he added.

The immune system is designed to protect the body from infection and injury, but an overactive immune response can damage organs or lead to inflammatory diseases. The vagus nerve connects the brain to the body and controls inflammatory response. One molecule in particular, the neurotransmitter acetylcholine, is released by the vagus nerve to slow the immune response before it causes collateral damage. In the spleen, for example, acetylcholine is necessary for blocking the production of dangerous amounts of inflammatory molecules like cytokines, but the details of how it worked was unclear.

Kevin Tracey, an immunologist at the Feinstein Institute for Medical Research in Manhasset, New York, discovered the “missing piece” for how the vagus nerve orchestrates immunity. Tracey and colleagues found that T cells in mouse spleens are actually releasing acetylcholine themselves after receiving a signal from the vagus nerve, playing a critical role in blocking inflammation. Though T cells are part of the immune system, in this context they’re essentially functioning as a neuron, Tracey said. “It’s remarkable.” Though the idea that immune cells can make neurotransmitters is not a new story, Tracey added, no one has ever shown that nerve signals initiate their release, and in turn play a protective anti-inflammatory role against disease...
__________________
In the last analysis, we see only what we are ready to see, what we have been taught to see. We eliminate and ignore everything that is not a part of our prejudices.

~ Jean-Martin Charcot


The future is already here — it's just not very evenly distributed. William Gibson
olsen is offline   Reply With QuoteReply With Quote
"Thanks for this!" says:
girija (09-17-2011), lindylanka (09-16-2011), paula_w (09-16-2011)

advertisement
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
Inhibiting the Neurotransmitter Acetylcholine In Parkinson's Disease imark3000 Parkinson's Disease 4 02-05-2011 08:54 AM
what is your dominant neurotransmitter? paula_w Parkinson's Disease 6 03-23-2010 06:47 AM
What effect does GDNF and Cere 120 have on acetylcholine? paula_w Parkinson's Disease 0 01-14-2010 07:43 PM


All times are GMT -5. The time now is 12:07 PM.

Powered by vBulletin • Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.

vBulletin Optimisation provided by vB Optimise v2.7.1 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
 

NeuroTalk Forums

Helping support those with neurological and related conditions.

 

The material on this site is for informational purposes only,
and is not a substitute for medical advice, diagnosis or treatment
provided by a qualified health care provider.


Always consult your doctor before trying anything you read here.