FAQ/Help |
Calendar |
Search |
Today's Posts |
![]() |
#1 | ||
|
|||
Member
|
http://www.medicalnewstoday.com/releases/256529.php
Professor Philippe Renaud of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland reported on soft arrays of miniature electrodes developed in his Microsystems Laboratory that open new possibilities for more accurate and local DBS. At the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, in a symposium called "Engineering the Nervous System: Solutions to Restore Sight, Hearing, and Mobility," he announced the start of clinical trials and early, yet promising results in patients, and describes new developments in ultra-flexible electronics that can conform to the contours of the brainstem - in the brain itself - for treating other disorders. At AAAS, Renaud outlines the technology behind these novel electronic interfaces with the nervous system, the associated challenges, and their immense potential to enhance DBS and treat disease, even how ultra flexible electronics could lead to the auditory implants of the future and the restoration of hearing. "Although Deep Brain Stimulation has been used for the past two decades, we see little progress in its clinical outcomes," Renaud says. "Microelectrodes have the potential to open new therapeutic routes, with more efficiency and fewer side effects through a much better and finer control of electrical activation zones." The preliminary clinical trials related to this research are being done in conjunction with EPFL spin-off company Aleva Neurotherapeutics, the first company in the world to introduce microelectrodes in Deep Brain Stimulation leading to more precise directional stimulation.
__________________
Imad Born in 1943. Diagnosed with PD in 2006. |
||
![]() |
![]() |
|
|
![]() |
||||
Thread | Forum | |||
She has been improving but...... | Survivors of Suicide | |||
Not improving with PT | Thoracic Outlet Syndrome | |||
Neurotalk:improving communication of neuroscience research | Parkinson's Disease | |||
A 'traffic light' for neurons means 'go' for improving brain research | Parkinson's Disease |